| Welcome to Global Village Space

Thursday, November 14, 2024

Researchers get to the roots of chronic stress, depression

Millions of years ago, our ancestors evolved the physiological responses needed to survive in the face of sudden threats from rivals and predators, contends study

A study in mice provides clues about the common molecular origins of chronic stress and depression. The discovery could inform new treatments for mood disorders. Millions of years ago, our ancestors evolved the physiological responses needed to survive in the face of sudden threats from rivals and predators.

The release of hormones, including epinephrine (adrenaline), noradrenaline (norepinephrine), and the steroid hormone cortisol, trigger these “fight-or-flight” stress responses. However, sustained or chronic stress that does not resolve when the immediate threat passes is a major risk factor for the development of mood disorders such as anxiety and depression.

Traumatic experiences, for example, in military combat, can also damage the body’s ability to regulate its stress responses, causing post-traumatic stress disorder. People with these mood disorders have abnormally high and sustained stress hormone levels, which puts them at an increased risk of developing cardiovascular disease.

Read more: Depression: Men Suffer More than Women Especially in Backward Areas

Researchers at the Karolinska Institutet in Stockholm, Sweden, suspected that a protein called p11 plays a pivotal role in damping down stress responses in healthy brains after an acute threat has passed.

Serotonin signal boost

Their previous research found that p11 enhances the effect of the hormone serotonin, which regulates mood and has a calming effect. Unusually low levels of p11 have been found in the brains of people with depression and in individuals who died by suicide.

Mice with reduced p11 levels also show depression and anxiety-like behaviors. In addition, three different classes of antidepressants that are effective in humans increase levels of this protein in the animals’ brains. Now the Karolinska researchers have discovered that reduced p11 levels in the brains of mice make the animals more sensitive to stressful experiences.

The scientists also demonstrated that the protein controls activity in two distinct stress signaling pathways in the brain. It reduces not only the release of cortisol via one pathway but also adrenaline and noradrenaline via the other.

“We know that an abnormal stress response can precipitate or worsen depression and cause anxiety disorder and cardiovascular disease,” says first author Vasco Sousa. “Therefore, it is important to find out whether the link between p11 deficiency and stress response that we see in mice can also be seen in patients.”

Read more: Understanding ‘Human Trauma’ in COVID-19 Times

The study, which appears in the journal Molecular Psychiatry, was a collaboration between the Karolinska Institutet and researchers at VU University in Amsterdam, The Netherlands.

Online Int’l News with additional input by GVS News Desk